Exploring the Full Potential of Radiofrequency Technology: A Practical Guide to Advanced Radiofrequency Ablation for Complex Ventricular Arrhythmias (2024)

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

1. Chugh SS, Reinier K, Teodorescu C, et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis. 2008;51:213–228. [PMC free article] [PubMed] [Google Scholar]

2. Poole JE, Johnson GW, Hellkamp AS, et al. Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med. 2008;359:1009–1017. [PMC free article] [PubMed] [Google Scholar]

3. Sweeney MO, Sherfesee L, DeGroot PJ, et al. Differences in effects of electrical therapy type for ventricular orphan on mortality in implantable cardioverter-defibrillator patients. Heart Rhythm. 2010;7:353–360. [PubMed] [Google Scholar]

4. Tung R, Xue Y, Chen M, et al. First-line catheter ablation of monomorphic ventricular tachycardia in cardiomyopathy concurrent with defibrillator implantation: the PAUSE-SCD randomized trial. Circulation. 2022;145(25):1839–1849. [PubMed] [Google Scholar]

5. Arenal A, Avila P, Jimenez-Candil J, et al. Substrate ablation vs antiarrhythmic drug therapy for symptomatic ventricular tachycardia. J Am Coll Cardiol. 2022;79(15):1441–1453. [PubMed] [Google Scholar]

6. Della Bella P, Baratto F, Vergara P, et al. Does timing of ventricular tachycardia ablation affect prognosis in patients with an implantable cardioverter defibrillator? Results from the multicenter randomized PARTITA trial. Circulation. 2022;145:1829–1838. [PubMed] [Google Scholar]

7. Tonko J, Lambiase P. A review of novel and emerging non-radiofrequency ablation modalities in ventricular orphan: towards an individualized substrate-guided choice of ablation technology. Eur J Arrhythm Electrophysiol. 2023;9(1):11–21. [Google Scholar]

8. Ghannam M, Siontis KC, Kim HM, et al. Stepwise approach for ventricular tachycardia ablation in patients with predominantly intramural scar. JACC: Clinical EP. 2020;6(4):448–460. [PubMed] [Google Scholar]

9. Komatsu Y, Cochet H, Jadidi A, et al. Regional myocardial wall thinning at multidetector computed tomography correlates to arrhythmogenic substrate in post-infarction ventricular tachycardia: assessment of structural and electrical substrate. Circ Arrhythm Electrophysiol. 2013;6:342–350. [PubMed] [Google Scholar]

10. Esposito A, Palmisano A, Antunes S, et al. Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate: relationship between CT-segmented scar and electro-anatomic mapping. JACC Cardiovasc Imaging. 2016;9:822–832. [PubMed] [Google Scholar]

11. Ghannam M, Cochet H, Jais P, et al. Correlation between computer tomography- derived scar topography and critical ablation sites in post-infarction ventricular tachycardia. J Cardiovasc Electrophysiol. 2018;29:438–445. [PubMed] [Google Scholar]

12. Takigawa M, Duchateau J, Sacher F, et al. Are wall thickness channels defined by computed tomography predictive of isthmuses of post-infarction ventricular tachycardia? Heart Rhythm. 2019;16(11):1661–1668. [PubMed] [Google Scholar]

13. Xu L, Koshknab M, Berger RD, et al. Lipomatous metaplasia enables ventricular tachycardia by reducing current loss within the protected corridor. JACC Clin Electrophys. 2022;8(10):1274–1285. [PMC free article] [PubMed] [Google Scholar]

14. Xu L, Zahid S, Khoshknab M, et al. Lipomatous metaplasia prolongs repolarization and increases repolarisation dispersion within post infarct ventricular tachycardia circuit cites. Europace. 2023;25(2):496–505. [PMC free article] [PubMed] [Google Scholar]

15. Zipse MW, Edward JA, Zheng L, et al. Impact of epicardial adipose tissue and catheter ablation strategy on biophysical parameters and ablation lesion characteristics. J Cardiovasc Electrophysiol. 2020;31(5):1114–1124. [PubMed] [Google Scholar]

16. Venlet J, Piers SRD, Kapel GFL, et al. Unipolar endocardial voltage mapping in the right ventricle: optimal cutoff values correcting for computed tomography-derived epicardial fat thickness and their clinical value for substrate delineation. Circ AE. 2017;10(8):e005175. [PubMed] [Google Scholar]

17. Aziz Z, Shatz D, Raiman M, et al. Targeted ablation of ventricular tachycardia guided by wave front discontinuities during sinus rhythm: a new functional substrate mapping strategy. Circulation. 2019;140:1383–1397. [PubMed] [Google Scholar]

18. Crinion D, Neira V, Al Hamad N, et al. Close-coupled pacing to Identify the “functional” substrate of ventricular tachycardia. Long term outcomes of the paced electrogram feature analysis technique. Heart Rhythm. 2021;18(5):723–731. [PubMed] [Google Scholar]

19. Hattori M, Komatsu Y, Naeemah QJ, et al. Rotational activation pattern during functional substrate mapping: novel target for catheter ablation of scar related ventricular tachycardia. Circulation AE. 2022;15(1):e010308. [PMC free article] [PubMed] [Google Scholar]

20. Porta-Sánchez A, Jackson N, Lukac P, et al. Multi-centre study of ischemic ventricular tachycardia ablation with decrement-evoked potential (DEEP) mapping with extra stimulus. JACC Clin Electrophysiol. 2018;4:307–315. [PubMed] [Google Scholar]

21. Izquierdo M, Sanchez-Gomez JM, de Loma-Osorio AF, et al. Endo-epicardial versus only-endocardial ablation as a first line strategy for the treatment of ventricular tachycardia in patients with ischemic heart disease. Circulation: Arrhythm Electrophysiol. 2015;8(4):882–9. [PubMed] [Google Scholar]

22. Acosta J, Fernandez-Armenta J, Penela D, et al. Infarct transmurality as a criterion for first line endo-epicardial substrate guided ventricular tachycardia ablation in ischemic cardiomyopathy. Heart Rhythm. 2016;13(1):85–95. [PubMed] [Google Scholar]

23. Hendriks AA, Khan M, Geller L, et al. Ventricular tachycardia in ischemic cardiomyopathy; a combined endo-epicardial ablation as the first procedure versus a stepwise approach (EPILOGUE) study protocol for a randomized controlled trial) Trials. 2015;16:487. [PMC free article] [PubMed] [Google Scholar]

24. Bhaskaran A, Tung R, Stevenson WG, Kumar S. Catheter ablation of VT in non-ischaemic cardiomyopathies: endocardial, epicardial and intramural approaches. Heart Lung Circ. 2019;28(1):84–101. [PubMed] [Google Scholar]

25. Stevenson W, Tedrow U, Reddy V, et al. Infusion needle radiofrequency ablation for treatment of refractory ventricular orphan. J Am Coll Cardiol. 2019;73(12):1413–1425. [PubMed] [Google Scholar]

26. Nakagawa H, Yamanashi WS, Pitha JV, et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation. 1995;91:2264–2273. [PubMed] [Google Scholar]

27. Nguyen DT, Olson M, Zheng L, et al. Effect of irrigant characteristics on lesion formation after radiofrequency energy delivery using ablation catheters with actively cooled tips. J Cardiovasc Electrophys. 2015;792–798. [PubMed]

28. Barkagan M, Rottmann M, Leshem E, et al. Effect of baseline impedance on ablation lesion dimensions: a multi-modality concept validation from physics to clinical experience. Circ Arrhythm Electrophysiol. 2018;11(10):e006690. [PubMed] [Google Scholar]

29. Nguyen DT, Nguyen K, Zheng L, et al. Effect of environmental impedance surrounding a radiofrequency ablation catheter electrode on lesion characteristics. J Cardiovasc Electrophysiol. 2017;28:564–569. [PubMed] [Google Scholar]

30. Huang H, Ravi V, Rhodes P, et al. Use of infrared thermography to delineate temperature gradients and critical isotherms during catheter ablation with normal and half normal saline: Implications for safety and efficacy. J Cardiovasc Electrophysiol. 2021;32(8):2035–2044. [PubMed] [Google Scholar]

31. Tschabrunn CM, Pothineni NVK, Sauer WH, et al. Evaluation of radiofrequency ablation irrigation type: in vivo comparison of normal versus half-normal saline lesion characteristics. J Am Coll Cardiol Clin Electrophysiol. 2020;6:684–692. [PubMed] [Google Scholar]

32. Nguyen DT, Baykaner T, et al. The new normal. JACC Clin Electrophysiol. 2020;6(6):693–695. [PMC free article] [PubMed] [Google Scholar]

33. Nguyen DT, Tzou W, Sandhu A, et al. Prospective multicenter experience with cooled radiofrequency ablation using high impedance irrigant to target deep myoardial substrate refractory to standard ablation. JACC Clinical EP. 2018;4(9):1176–1185. [PubMed] [Google Scholar]

34. Dong Z, Wang H, Ma K, et al. Half versus normal saline irrigation during catheter ablation of outflow tract ventricular orphan (HALF): a multi-center, parallel, open-label, randomized controlled study. J Interv Card Electrophysiol. 2023 doi:10.1007/s10840-023-01558-0. [PubMed] [CrossRef] [Google Scholar]

35. Demazumder D, Mirotznik MS, Schwartzman D. Biophysics of radiofrequency ablation using an irrigated electrode. J Interv Card Electrophysiol. 2001;5:377–389. [PMC free article] [PubMed] [Google Scholar]

36. Futyma PR, Kulakowski P. Bipolar radiofrequency ablation supported by non-ionic catheter irrigation. EP Europace. 2020;22(Suppl 1):euaa162.010. [Google Scholar]

37. Shapira-Daniels A, Barkagan M, Rottmann M, et al. Modulating baseline impedance: an adjunctive technique for maximizing radiofrequency lesion dimensions in deep and intramural ventricular substrate. Circ Arrhythm Electrophysiol. 2020;12(6):e007336. [PMC free article] [PubMed] [Google Scholar]

38. Bennett R, Campbell T, Byth K, et al. Catheter ablation using half-normal saline and dextrose irrigation in an ovine ventricular model. JACC EP. 2021;7(10):1229–1239. [PubMed] [Google Scholar]

39. Debenham R, Tzou WS. Epicardial ablation biophysics and novel radiofrequency energy delivery techniques. Card Electrophysiol Clin. 2020;12(3):401–408. [PubMed] [Google Scholar]

40. Younis A, Zilberman I, Yavin H, et al. Utility and limitations of ablation index for guiding therapy in ventricular myocardium. JACC EP. 2023 doi:10.1016/j.jacep.2023.03.020. [PubMed] [CrossRef] [Google Scholar]

41. Irastorza RM, Maher T, Barkagan M, et al. Limitations of baseline impedance, impedance drop and current for radiofrequency catheter ablation monitoring: insights from in silico modeling. J Cardiovasc Dev Dis. 2022;9(10):336. [PMC free article] [PubMed] [Google Scholar]

42. Chang RJ, Stevenson WG, Saxon LA, Parker J. Increasing catheter ablation lesion size by simultaneous application of radiofrequency current to two adjacent sites. Am Heart J. 1993;125:1276–1284. [PubMed] [Google Scholar]

43. Iyker V, Gambhir A, Desai SP, et al. Successful simultaneous unipolar radiofrequency ablation of septal ventricular tachycardia using 2 ablation catheters. Heart Rhythm. 2014;11(4):710–713. [PMC free article] [PubMed] [Google Scholar]

44. Yamada T, Maddox WR, McElderry HT, Doppalapudi H, Plumb VJ, Kay GN. Radiofrequency catheter ablation of idiopathic ventricular orphan originating from intramural foci in the left ventricular outflow tract: efficacy of sequential versus simultaneous unipolar catheter ablation. Circ Arrhythm Electrophysiol. 2015;8:344–352. [PubMed] [Google Scholar]

45. Yang J, Liang J, Shirai Y, et al. Outcomes of simultaneous unipolar radiofrequency catheter ablation for intramural septal ventricular tachycardia in non-ischemic cardiomyopathy. Heart Rhythm. 2019;16(6):863–870. [PubMed] [Google Scholar]

46. Koruth JS, Dukkipati S, Miller MA, et al. Bipolar irrigated radiofrequency ablation: a therapeutic option for refractory intramural atrial and ventricular tachycardia circuits. Heart Rhythm. 2012;9:1932–1941. [PubMed] [Google Scholar]

47. Gizurarson S, Spears D, Sivagangabalan G, et al. Bipolar ablation for deep intra-myocardial circuits: human ex-vivo development and in-vivo experience. EP Europace. 2014;16(11):1684–1688. [PubMed] [Google Scholar]

48. Nguyen DT, Tzou WS, Brunnquell M, et al. Clinical and biophysical evaluation of variable bipolar configurations during radiofrequency ablation for treatment of ventricular orphan. Heart Rhythm. 2016;13(11):2161–2171. [PubMed] [Google Scholar]

49. Younis A, Yavin H, Higuchi K, et al. Increasing lesion dimensions of bipolar ablation by modulating the surface area of the return electrode. JACC Clin Electrophysiology. 2022;8(4):498–510. [PubMed] [Google Scholar]

50. Nguyen DT, Zheng L, Zipse MM, Borne RT, Tzou WS, Fleeman B, et al. Bipolar radiofrequency ablation creates different lesion characteristics compared to simultaneous unipolar ablation. J Cardiovasc Electrophysiol. 2019;30:2960–2967. [PubMed] [Google Scholar]

51. Teh AW, Reddy VY, Koruth JS, et al. Bipolar radiofrequency catheter ablation for refractory ventricular outflow tract orphan. J Cardiovasc Electrophysiol. 2014;25(10):1093–1099. [PubMed] [Google Scholar]

52. Della Bella P, Peretto G, Paglino G, et al. Bipolar radiofrequency ablation for ventricular tachycardias originating from the interventricular septum: safety and efficacy in a pilot cohort study. Heart Rhythm. 2020;17(12):2111–2118. [PubMed] [Google Scholar]

53. Araj M, f*ckamizu S, Kawamura I, et al. Successful bipolar radiofrequency catheter ablation of ventricular premature complexes arising from the anterolateral papillary muscle of the left ventricle. Heart Rhythm Case Report. 2019;5(9):472–475. [PMC free article] [PubMed] [Google Scholar]

54. Derejko P, Kusnierz J, Bardyszewski A, et al. Bipolar endo-epicardial radiofrequency ablation of therapy-resistant ventriculararrhythmias: a brief case series. JACC EP. 9(6):733–737. [PubMed]

55. Futyma P, Ciapala K, Sander J, et al. Bipolar radiofrequency ablation of ventriculararrhythmiasoriginating in the vicinity of his bundle. Circulation:arrhythmiaand Electrophysiology. [PubMed]

56. Igarashi M, Nogami A, f*ckamizu S, et al. Acute and longterm results of bipolar radiofrequency catheter ablation of refractory ventricular orphan of deep intramural origin. Heart Rhythm. 2020;17(9):1500–1507. [PubMed] [Google Scholar]

57. Kany S, Alken FA, Schleberger R, et al. Bipolar ablation of therapy refractory ventricular orphan: application of a dedicated approach. Europace. 2022;24(6):959–969. [PMC free article] [PubMed] [Google Scholar]

58. Liang JJ, Bogun F. Bipolar ablation for intramural ventricular tachycardia substrate: ready for prime time? Heart rhythm. 17(9):1508–1509. [PubMed]

59. Fernandes GC, Nguyen T, Creed E, et al. Multipolar ablation using mapping electrodes. A Novel approach to Intramural Arrhythmia Substrates. JACC EP. 2023;9(5):680–685. [PubMed] [Google Scholar]

60. Soucek F, Starek Z. Use of bipolar radiofrequency catheter ablation in the treatment of cardiac orphan. Curr Cardiol Rev. 2018;14(3):185–191. [PMC free article] [PubMed] [Google Scholar]

61. https://clinicaltrials.gov/ct2/show/results/NCT02374476. Accessed 11 Feb 2023.

62. Bourier F, Ramirez FD, Martin CA, et al. Impedance, power and current in radiofrequency ablation: insights from technical, ex vivo and clinical studies. J Cardiovasc Electrophys. 2020;31(11):2836–2845. [PubMed] [Google Scholar]

63. Olson MD, Phreaner N, Schuller JL, Nguyen DT, Katz DF, Aleong RG, et al. Effect of catheter movement and contact during application of radiofrequency energy on ablation lesion characteristics. J Interv Card Electrophysiol. 2013;38:123–129. [PubMed] [Google Scholar]

64. Romero J, Ajijola OA, Boyle N, Shivkumar K, Tung R. Prolonged high-power endocardial ablation of epicardial microreentrant VT from the LV summit in a patient with nonischemic cardiomyopathy. Heart Rhythm Case Rep. 2015;1:464–468. [PMC free article] [PubMed] [Google Scholar]

65. Yokokawa M, Latchamsetty R, Good E, Chugh A, Pelosi F, Jr, Crawford T, et al. Ablation of epicardial ventricular orphan from nonepicardial sites. Heart Rhythm. 2011;8:1525–1529. [PubMed] [Google Scholar]

66. Komatsu Y, Daly M. Sacher F Endocardial ablation to eliminate epicardial arrhythmia substrate in scar-related ventricular tachycardia. J Am Coll Cardiol. 2014;63:1416–1426. [PubMed] [Google Scholar]

67. Nguyen DT, Moss JD, Zheng L, et al. Effects of radiofrequency energy delivered through partially insulated metallic catheter tips on myocardial tissue heating and ablation lesion characteristics. Heart Rhythm. 2015;12(3):623–630. [PubMed] [Google Scholar]

68. Romero J, Diaz JC, Hayase J, et al. Intramyocardial radiofrequency ablation of ventricular orphan using intracoronary wire mapping and a coronary reentry system: description of a novel technique. Heart Rhythm Case Reports. 2018;4(7):285–292. [PMC free article] [PubMed] [Google Scholar]

69. Nazer B, Walter TW, Duggirala S, Gerstenfeld EP. Feasibility of rapid linear endocardial and epicardial ventricular ablation using an irrigated multipolar radiofrequency ablation catheter. Circulation AE. 2017;10(3):e004760. [PubMed] [Google Scholar]

70. Liu L, Li J, Zuo L, et al. Percutaneous intramyocardial septal radiofrequency ablation for hypertrophic obstructive cardiomyopathy. JACC. 2018;72(16):1898–1909. [PubMed] [Google Scholar]

71. Woo EJ, Tungjitkusolmun S, Cao H, Tsai JZ, Webster JG, Vorperian VR, et al. A new catheter design using needle electrode for subendocardial RF ablation of ventricular muscles: finite element analysis and in vitro experiments. IEEE Trans Biomed Eng. 2000;47:23–31. [PubMed] [Google Scholar]

72. Thiagalingam A, Campbell CR, Boyd A, et al. Catheter intramural needle radiofrequency ablation creates deeper lesions than irrigated tip catheter ablation. PACE. 2003;26(11):2146–2150. [PubMed] [Google Scholar]

73. Thiagalingam A, Pouliopoulos J, Barrry MA, et al. Cooled needle catheter ablation creates deeper and wider lesons than irrigated tip catheter ablation. J Cardiovasc Electrophys. 2005;16(5):508–515. [PubMed] [Google Scholar]

74. Sapp JL, Cooper JM, Zei P, Stevenson W. Large radiofrequency ablation lesions can be created with a retractable infusion needle catheter. J Cardiovasc Electrophys. 2006;17(6):657–661. [PubMed] [Google Scholar]

75. Berte B, Cochet H, Magat J, et al. Irrigated needle ablation creates larger and more transmural ventricular lesions compared with standard unipolar ablation in an ovine model. Circ Arrhythm electrophysiol. 2015;8(6):1498–1506. [PubMed] [Google Scholar]

76. Sapp JL, Beeckler C, Pike R, et al. Initial human feasibility of infusion needle catheter ablation for refractory ventricular tachycardia. Circulation. 2013;128(21):2289–2295. [PubMed] [Google Scholar]

77. Abdel-Wahab A, Stevenson W, Thompson K, Parkash R, Gray C, Gardner M, et al. Intramural ventricular recording and pacing in patients with refractory ventricular tachycardia: initial findings and feasibility with a retractable needle catheter. Circ Arrhythm Electrophysiol. 2015;8:1181–1188. [PubMed] [Google Scholar]

78. Narui R, Tanigawa S, Nakajima I, et al. Irrigated needle ablation compared with other advanced ablation techniques for failed endocardial ventricular arrhythmia ablation. Circulation AE. 2021;14(7). [PubMed]

79. Tedrow UB, Kurata M, Kawamura I, et al. Worldwide Experience With an Irrigated Needle Catheter for Ablation of Refractory Ventricular Orphan: Final Report. JACC: Clinical EP. 2023;9(8):1475–1486. [PubMed] [Google Scholar]

80. John RM, Connell J, Termin P, Houde-Walter H, Eberl G, Stohlman KM, et al. Characterization of warm saline-enhanced radiofrequency ablation lesions in the infarcted porcine ventricular myocardium. J Cardiovasc Electrophysiol. 2014;25:309–316. doi:10.1111/jce.12307. [PubMed] [CrossRef] [Google Scholar]

81. Dickow J, Suzuki A, Henz B, et al. Characterization of lesions created by a heated salien irrigated needle tip catheter in the normal and infarcted canine heart. Circulation AE. 2020;13:e009090. [PubMed] [Google Scholar]

82. Kitamura T, Hocini M, Bourier F, et al. Larger and deeper ventricular lesions using a novel expandable spherical monopolar irrigated radiofrequency ablation catheter. J Cardiovasc Electrophys. 2019;30(9):1644–1651. [PubMed] [Google Scholar]

83. Barkagan M, Leshem E, Rottmann M, Sroubek J, Shapira-Daniels A, Anter E. Expandable lattice electrode ablation catheter. Circ Arrhythm Electrophysiol. 2019;12:e007090. [PMC free article] [PubMed] [Google Scholar]

84. Reddy VY, Anter E, Rackauskas G, et al. Lattice-tip focal ablation catheter that toggles between radiofrequency and pulsed field energy to treat atrial fibrillation. 2020;13:e008718. [PubMed] [Google Scholar]

85. Nguyen DT, Tzou WS, Zipse MM, et al. Protection of critical structures during radiofrequency ablation of adjacent myocardial tissue using catheter tips partially insulated with thermally conductive material. JACC Clin Electrophys. 2016;2(7):838–846. [PubMed] [Google Scholar]

86. Killu AM, Naksuk N, Syed FF, et al. Feasibility of directional percutaneous epicardial ablation with a partially insulated catheter. J Interventional Cardiac Electrophysiology. 2018;53:105–113. [PubMed] [Google Scholar]

87. Xuan F, Liang M, Li S, et al. Guidewire ablation of epicardial ventricular arrhythmia within the coronary venous system: a case report. Heart Rhythm Case Rep. 2021;8(3):195–199. [PMC free article] [PubMed] [Google Scholar]

88. Tholakanahalli VN, Bertog S, Roukoz H, Shivkuma K. Catheter ablation of ventricular tachycardia using intracoronary wire mapping and coil embolizaton: description of a new technique. Heart Rhythm. 2013;10(2):202–296. [PubMed] [Google Scholar]

Exploring the Full Potential of Radiofrequency Technology: A Practical Guide to Advanced Radiofrequency Ablation for Complex Ventricular Arrhythmias (2024)

References

Top Articles
Latest Posts
Article information

Author: Stevie Stamm

Last Updated:

Views: 5499

Rating: 5 / 5 (80 voted)

Reviews: 87% of readers found this page helpful

Author information

Name: Stevie Stamm

Birthday: 1996-06-22

Address: Apt. 419 4200 Sipes Estate, East Delmerview, WY 05617

Phone: +342332224300

Job: Future Advertising Analyst

Hobby: Leather crafting, Puzzles, Leather crafting, scrapbook, Urban exploration, Cabaret, Skateboarding

Introduction: My name is Stevie Stamm, I am a colorful, sparkling, splendid, vast, open, hilarious, tender person who loves writing and wants to share my knowledge and understanding with you.